Shear wave elastography (SWE) can detect cancer tissue left behind—more sensitively than surgeons—after a brain tumor is removed and could improve the outcomes from operations, a new study suggests. SWE could be used during brain surgery to detect residual cancerous tissue, allowing surgeons to remove as much as possible. The scan measures tissues’ stiffness and stretchiness. Vibrations or “shear waves” are created and detected as they move through tissue, moving faster through stiffer tissue. Researchers believe that SWE, which is much faster to carry out and more affordable than “gold-standard” MRI scans, has the potential to reduce a patient’s risk of relapse by reducing the chances that a tumor will grow back.
“Imaging plays a crucial role in many aspects of cancer treatment, in providing valuable information about tumors and ensuring doctors don’t have to make decisions blind,” says Kevin Harrington, PhD, a professor and the head of the division of radiotherapy and imaging at The Institute of Cancer Research. “This new study has shown for the first time that a particular type of ultrasound scan could provide real-time guidance to brain surgeons during operations as they choose which tissue to remove. It’s an exciting area of research which has the potential to improve outcomes for patients by ensuring surgeons take out the entire tumor while minimizing damage to the healthy brain.”
A multi-institutional team led by The Institute of Cancer Research, London, and the National Hospital for Neurology and Neurosurgery, London, compared three different techniques to detect tumor tissue during surgery—SWE scans, standard 2D ultrasound, and a surgeon’s opinion—in 26 patients. The research was conducted in collaboration with clinicians from The Royal London Hospital and University Hospital Southampton. The researchers performed SWE scans and 2D ultrasounds during the operation—before, during, and after tumor removal. They also asked surgeons to identify potentially cancerous tissue before providing them with scan findings. The team then compared all techniques with gold-standard MRI scans after surgery.
The study is published in the journal Frontiers in Oncology and was funded by the Royal Free Charity and the United Kingdom’s Engineering and Physical Sciences Research Council. It found that SWE was more sensitive in detecting residual tumor tissue than a standard ultrasound or the surgeon alone. SWE scans detected tumor tissue with 94% sensitivity—compared with 73% for standard ultrasound and 36% for the surgeon. This means that when there was residual tumor, shear wave scans were 2.5 times better than the surgeon at detecting it.
However, SWE scans detected tumor tissue with only 77% specificity, better than the 63% for standard ultrasound but less than the 100% for surgeons. That means that the new technique could yield more false-positives than would surgeons. For that reason, the researchers believe it would be best used in combination with a surgeon’s opinion.
“This technique provides a very practical means of detecting areas of potentially removable tumor that are not readily visible to the operating surgeon,” says Neil Dorward, BSc, MBBS, FRCS(SN), MS, consultant neurosurgeon and coresearcher at the National Hospital for Neurology and Neurosurgery. “The surgeon must use his or her experience to decide whether the area of abnormality should be resected. This has the potential to substantially improve the outcome of such operations.”
Brain tumors tend, on average, to be stiffer than normal brain tissue, and the technique works by mapping suspicious areas of particular stiffness, which can then be examined and removed during surgery. Patient outcomes from brain tumor surgery are known to be better when as much of the tumor as possible is removed. In order to make sure none of the resectable tumor is left behind, neurosurgeons use tools to guide them during surgery. Although MRI scans are the most accurate, their use during surgery is not normally an option because they are costly, not normally available in operating theaters, and would increase the duration of surgery by almost two hours.
SWE scans were shown to be as good as postsurgery MRIs at detecting tumor tissue that had been left behind, making them a cheaper, faster, and more feasible alternative. The study is the first to demonstrate the potential of SWE as a neurosurgical tool to confirm during surgery the completeness of tumor removal, but the benefits of the technique will now need to be confirmed in larger studies before it can be recommended as standard practice.
“Ensuring all of a brain tumor is removed without damaging healthy tissue is a major challenge in brain surgery. Using this new type of scan, surgeons could greatly increase confidence that no cancerous tissue is going to be left behind after surgery,” says study leader Jeffrey Bamber, MSc, PhD, a professor in physics applied to medicine at The Institute of Cancer Research. “Shear wave scanning can quickly and affordably map the stiffness of brain and tumor tissue in patients during surgery. Tumor tissue tends to have a different stiffness from that of surrounding healthy brain tissue and can be located and removed. We have shown for the first time that this new tool is better than either a standard 2D ultrasound or a surgeon’s judgment on its own and has the potential to supplement a surgeon’s opinion as a means of improving outcomes from operations.”
— Source: The Institute of Cancer Research, London